1. 平方根
如果一个正数x的平方等于a,即
那么x叫做a的算术平方根
,a的算术平方根记为
读作“根号a”,a叫做被开方数。
因为0*0=0,所以0的平方根为0。
2. 立方根
如果一个数字的立方等于a,即
那么x叫做a的立方根
或三次方根。求一个数字的立方根的元素叫做开立方
。
一个数字a立方根,用数学符号表示为:
读作“三次根号a”,其中a是被开方数,3是根指数。
3. 实数
有理数包括整数和分数,所有能用整数和分数表达的数字都可以称为有理数。
事实上任何一个有理数都能表达为有限小数或无限循环小数。
但是有些实际存在意义的数字,却无法用分数表示(无法用有限小数、无限循环小数表示),其实他们是一类无限不循环小数。
这类数字被称为无理数,确实没有道理啊,怎么没有规律呢。
而有理数和无理数统称为实数。
4. 证明无理数的存在
有理数是在我们的生活中经常会接触到的现实意义数字,例如整数可以表示物品的数量,分数可以表示将m个东西平均分为n份。
但是无理数真的存在吗,我们以根号2为例证明它并不是有理数,证明过程如下:
1、假设根号2是有理数,则存在两个互质的正整数p、q,使
2、两边同时乘以q得出
3、两边同时平方
4、由于右侧是偶数,所以p的平方是偶数,而只有偶数的平方才是偶数,所以p是偶数。
5、既然p是偶数,所以可令p=2s,代入3中等式得出
即q的平方等于2倍s的平方,所以p也是偶数。
6、此时p和q都是偶数,不互质,与假设矛盾,所以假设不成立。根号2不能写为分数的形式,所以根号2不是有理数。
最后根号2在宇宙中确实是存在的,例如边长为1的正方形,其对角线长度不就是根号2吗?
如有问题请扫码联系我