程序员数学(14)--整式的乘法与因式分解

1. 同底数幂的乘法

同底数幂相等,底数不变,指数相加,即:
在这里插入图片描述
理解:m个a相乘,再乘以n个a相乘,即m+n个a相乘。

2. 幂的乘方

幂的乘方,底数不变,指数相乘,即:
在这里插入图片描述
理解:n个a的m次方相乘,实际上a乘以a一共发生了mn次。

3. 积的乘方

积的乘法,等于把积的每个因式分别乘方,再把所得的幂相乘,即:
在这里插入图片描述
理解,n个ab相乘,实际上和n个a相乘后,再乘以n个b是一个道理,乘法没有顺序。

4. 整式的乘法

单项式与单项式相乘,把它们的系数、同底数幂分别相乘,例如:
在这里插入图片描述
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,例如:
在这里插入图片描述
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,例如:
在这里插入图片描述

5. 同底数幂相除

同底数幂相除,底数不变,指数相减(a不等于0,且m、n为正整数),即:
在这里插入图片描述
理解,m个a相乘后,除以n个a,其实是m-n个a相乘。根据上面的规则:
在这里插入图片描述
任何不等于0的数的0次幂等于1

6. 整式的除法

单项式相除,把系数与同底数幂分别相除作为商的因式,例如:
在这里插入图片描述
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,证明:

因为:(a+b)m=am+bm
所以:(am+bm)/m=a+b
又:am/m+bm/m=a+b
所以:(am+bm)/m=am/m+bm/m

7. 平方差公式

在这里插入图片描述

8. 完全平方公式

在这里插入图片描述
在这里插入图片描述

9. 因式分解

将多项式化为几个整式的积的形式,称为多项式的因式分解。

9.1 提公因式法

pa+pb+pc=p(a+b+c)

9.2 公式法

利用平方差公司、完全平方式来进行因式分解,例如:
在这里插入图片描述


如有问题请扫码联系我
在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页